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Fig. 6.1. CPU time for computing T ⇤

p and Tq with various n.
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Fig. 6.2. Band structure of the 3D photonic crystals with FCC lattice. The vectors k’s along

the boundary of first Brillouin zone. The frequency ! = a
p
�/(2⇡) is shown on the y-axis. The

radius of the sphere is r = 0.12a and the connecting spheroid has minor axis length s = 0.11a.

in MATLAB are used for the IPL and CG methods, respectively. The stopping

tolerances for eigs and pcg are set to be 104 ⇥ ✏/(2
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respectively, where ✏ ⇡ 2�52 is the floating-point relative accuracy in MATLAB. The
maximal number of Lanczos vectors for the restart in eigs is set to be 20. All
computations are carried out on a workstation with two Intel Quad-Core Xeon X5687
3.6 GHz CPUs, 48 GB main memory, the RedHat Linux operation system, and IEEE
double-precision floating-point arithmetic operations.

Figure 6.1(a) shows the timing results for computing T ⇤p and Tq by Algorithm 2
and 3, respectively. The matrix size of T ranges from 884, 736 to 94, 818, 816. In
particular, the dimension of T is n̄3

j

, where n̄
j

= 96 + 24j = n
1

= n
2

= n
3

for
j = 0, 1, . . . , 15. The average CPU time out of ten trials for each j is then plotted
in the figure. We can see Algorithms 2 and 3 are extraordinarily e�cient. They take
less than 10 seconds to finish a T ⇤p or Tq matrix-vector multiplication even for the
matrix T whose dimension is as large as 95 million. Figure 6.1(b) shows that the
complexity of T ⇤p and Tq is O(n log(n)).

Being equipped with these fast T ⇤p or Tq computational kernels, we evaluate how
the IPL method (Algorithm 1) performs, in terms of CPU time and iteration numbers,
to solve the eigenvalue problems for the band structure of the target photonic crystals.

employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally

r

aa

a

s

a1a2

a3

Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.

aa

c

a1a2

a3

Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.

r

b

a′√3
2 a′

√2
3 a′

a1

a2

a3

Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally

r

aa

a

s

a1a2

a3

Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.

aa

c

a1a2

a3

Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.

r

b

a′√3
2 a′

√2
3 a′

a1

a2

a3

Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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proposed algorithms by showing the promising timing results. In particular, a MAT-
LAB implementation of this new algorithm can find the target eigenvalues of a se-
quence of 5.184 million dimension GEVP in the form of (1.5) within 50 to 104 minutes.

This paper is outlined as follows. In Section 2, we illustrate the degenerate coeffi-
cient matrix A corresponding to the discrete double-curl operator with FCC lattices.
In Section 3, we find an eigendecomposition of A and give explicit representations
of orthogonal basis for range and null spaces of A. We develop the inverse projec-
tive Lancsoz method and an efficient way to compute the associated matrix-vector
multiplications in Sections 4 and 5, respectively. Numerical experiments to validate
and measure the timing performance of the proposed schemes are demonstrated in
Section 6. Finally, we conclude the paper in Section 7.

Throughout this paper, we let ⊤ and ∗ denote the transpose and the conjugate
transpose of a matrix by the superscript, respectively. For the matrix operations, we
let ⊗ and ⊕ denote the Kronecker product and direct sum of two matrices, respec-
tively. The imaginary number

√
−1 is written as ı and the identity matrix of order n is

written as In. The conjugate of a complex scalar z ∈ C and a complex vector z ∈ Cn

are represented by z̄ and z̄, respectively. The vec(·) is the operator that vectorizes a
matrix by stacking the columns of the matrix.

2. Discrete Double-Curl Operator with FCC Lattice. We use Yee’s scheme
[35] to discretize Eq. (1.2) in the primitive cell that is illustrated in Figure 1.1. As
the details of discretization are complicated, we refer readers to [17] that describes
the whole discretization process in details. Let n1, n2 and n3 be the multiples of 6
and denote numbers of grid points in x-, y- and z-axis, respectively, and n = n1n2n3.
The mesh size in three axes are chosen by

δx =
a
√
2

1

n1
, δy =

a
√
2

√
3

4

1

n2
, δz =

a
√
2

√
2

3

1

n3
. (2.1)

The resulting large-scale 3n × 3n Hermitian and degenerate matrix associated with
the double-curl operator ∇×∇× is of the form

A = C∗C ∈ C
3n×3n, (2.2)

where

C =

⎡

⎣
0 −C3 C2

C3 0 −C1

−C2 C1 0

⎤

⎦ ∈ C
3n×3n, (2.3a)

C1 = In2n3 ⊗K1 ∈ C
n×n, C2 = In3 ⊗K2 ∈ C

n×n, C3 = K3 ∈ C
n×n, (2.3b)

K1 =
1

δx

⎡

⎢⎢⎢⎣

−1 1
. . .

. . .
−1 1

eı2πk·a1 −1

⎤

⎥⎥⎥⎦
∈ C

n1×n1 , (2.4a)

Eigendecomposition of Double-Curl Operator 5

K2 =
1

δy

⎡

⎢⎢⎢⎣

−In1 In1

. . .
. . .

−In1 In1

eı2πk·a2J2 −In1

⎤

⎥⎥⎥⎦
∈ C

(n1n2)×(n1n2), (2.4b)

K3 =
1

δz

⎡

⎢⎢⎢⎢⎢⎢⎣

−In1n2 In1n2

. . .
. . .

−In1n2 In1n2

eı2πk·a3J3 −In1n2

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ C

n×n, (2.4c)

J2 =

[
0 e−ı2πk·a1In1/2

In1/2 0

]
∈ C

n1×n1 , and (2.5a)

J3 =

[
0 e−ı2πk·a2I 1

3n2
⊗ In1

I 2
3n2

⊗ J2 0

]
∈ C

(n1n2)×(n1n2). (2.5b)

These matrices are associated with particular operators. We define that the point
((i + 1

2 )δx, jδy, kδz) or (iδx, (j +
1
2 )δy, kδz) or (iδx, jδy, (k + 1

2 )δz) is called a central
edge point and the point ((i + 1

2 )δx, (j +
1
2 )δy, kδz) or (iδx, (j + 1

2 )δy , (k + 1
2 )δz) or

((i + 1
2 )δx, jδy, (k + 1

2 )δz) is called a central face point.
(i) The block cyclic matrices K1, K2, and K3 are the finite difference discretizations

associated with quasi-periodic property. The entries −I and I in the same
row of Kℓ, ℓ = 1, 2, 3, correspond to the regular finite differences. The entries
eı2πk·a1 and −1 in the last row of K1 are associated with the quasi-periodic
property along a1. Similarly, eı2πk·a2J2 and −In1 in K2 are associated with
the quasi-periodic property along a1 and a2. The matrices eı2πk·a3J3 and
−In1n2 in K3 are associated with the quasi-periodic property along a1, a2
and a3.

(ii) The matrices C1, C2, and C3 are the discretizations of the operators ∂x, ∂y and
∂z, respectively, at the central face points.

(iii) C∗
1 , C∗

2 and C∗
3 are the discretizations of the operators −∂x, −∂y and −∂z,

respectively, at the central edge points.
(iv) The matrices C∗C, I3 ⊗ (G∗G) and GG∗ are the discretizations of the operators

∇×∇×, −∇2 at the central face points, and −∇(∇·) at the central edge
points, respectively, where

G = [C⊤
1 , C⊤

2 , C⊤
3 ]⊤. (2.6)

3. Eigendecomposition of the Discrete Operators. In the following two
sub-sections, we derive eigendecompositions of the discrete partial derivative operators
Cℓ’s and then the discrete double-curl operator A = C∗C in explicit forms.

3.1. Eigendecomposition of the partial derivative operators. To find an
eigendecomposition of Cℓ defined in (2.3a), our approach is divided into the following
steps. First, we find the eigenpairs of K1, K2, and K3 defined in (2.4). By using
these eigenpairs, we show that the matrices C1, C2, and C3 can be diagonalized by a

E(x+ a`) = eı2⇡k·a`E(x)
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K
2

=
1

�
y

2

6664

�I
n1 I

n1

. . .
. . .

�I
n1 I

n1

eı2⇡k·a2J
2

�I
n1

3

7775
2 C(n1n2)⇥(n1n2), (2.4b)

K
3

=
1

�
z

2

6666664

�I
n1n2 I

n1n2

. . .
. . .

�I
n1n2 I

n1n2

eı2⇡k·a3J
3

�I
n1n2

3

7777775
2 Cn⇥n, (2.4c)

J
2

=


0 e�ı2⇡k·a1I

n1/2

I
n1/2

0

�
2 Cn1⇥n1 , and (2.5a)

J
3

=


0 e�ı2⇡k·a2I 1

3n2
⌦ I

n1

I 2
3n2

⌦ J
2

0

�
2 C(n1n2)⇥(n1n2). (2.5b)

These matrices are associated with particular operators. We call points ((i+ 1

2

)�
x

, j�
y

, k�
z

),
(i�

x

, (j + 1

2

)�
y

, k�
z

) and (i�
x

, j�
y

, (k + 1

2

)�
z

) central edge points, and points ((i+ 1

2

)�
x

, (j + 1

2

)�
y

, k�
z

),
(i�

x

, (j + 1

2

)�
y

, (k + 1

2

)�
z

) and ((i+ 1

2

)�
x

, j�
y

, (k + 1

2

)�
z

) central face points.
(i) The block cyclic matrices K

1

, K
2

, and K
3

are the finite di↵erence discretizations
associated with quasi-periodic conditions. The entries �I and I in the same
row of K

`

, ` = 1, 2, 3, correspond to the regular finite di↵erences. The entries
eı2⇡k·a1 and �1 in the last row of K

1

are associated with the quasi-periodic
condition along a

1

. Similarly, eı2⇡k·a2J
2

and �I
n1 in K

2

are associated with
the quasi-periodic condition along a

1

and a
2

. The matrices eı2⇡k·a3J
3

and
�I

n1n2 in K
3

are associated with the quasi-periodic condition along a
1

, a
2

and a
3

.
(ii) The matrices C

1

, C
2

, and C
3

are the discretizations of the operators @
x

, @
y

and
@
z

, respectively, at the central face points.
(iii) C⇤

1

, C⇤
2

and C⇤
3

are the discretizations of the operators �@
x

, �@
y

and �@
z

,
respectively, at the central edge points.

(iv) The matrices C⇤C, I
3

⌦ (G⇤G) and GG⇤ are the discretizations of the operators
r⇥r⇥, �r2 and �r(r·) at the central edge points, respectively, where

G = [C>
1

, C>
2

, C>
3

]>. (2.6)

3. Eigendecomposition of the Discrete Operators. In the following two
sub-sections, we derive eigendecompositions of the discrete partial derivative operators
C

`

’s and then the discrete double-curl operator A = C⇤C in explicit forms.

3.1. Eigendecomposition of the partial derivative operators. To find an
eigendecomposition of C

`

defined in (2.3a), our approach is divided into the following
steps. First, we find the eigenpairs of K

1

, K
2

, and K
3

defined in (2.4). By using
these eigenpairs, we show that the matrices C

1

, C
2

, and C
3

can be diagonalized by a
common unitary matrix. Combining these results, we obtain the eigendecompositions
of C

`

.
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where       is a diagonal matrix and
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Dispersive metallic materials (3D)
Lossy Drude model (or Drude-Lorentz model) 
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Resulting nonlinear eigenvalue problem 
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Multiplying the common denominator, it results  
 
 
where
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where     is the average of the diagonal entries of  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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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Fig. 6.1. CPU time for computing T ⇤

p and Tq with various n.
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Fig. 6.2. Band structure of the 3D photonic crystals with FCC lattice. The vectors k’s along

the boundary of first Brillouin zone. The frequency ! = a
p
�/(2⇡) is shown on the y-axis. The

radius of the sphere is r = 0.12a and the connecting spheroid has minor axis length s = 0.11a.

in MATLAB are used for the IPL and CG methods, respectively. The stopping

tolerances for eigs and pcg are set to be 104 ⇥ ✏/(2
q
��2

x

+ ��2

y

+ ��2

z

) and ✏

�

2
x

⇥ 10�3,

respectively, where ✏ ⇡ 2�52 is the floating-point relative accuracy in MATLAB. The
maximal number of Lanczos vectors for the restart in eigs is set to be 20. All
computations are carried out on a workstation with two Intel Quad-Core Xeon X5687
3.6 GHz CPUs, 48 GB main memory, the RedHat Linux operation system, and IEEE
double-precision floating-point arithmetic operations.

Figure 6.1(a) shows the timing results for computing T ⇤p and Tq by Algorithm 2
and 3, respectively. The matrix size of T ranges from 884, 736 to 94, 818, 816. In
particular, the dimension of T is n̄3

j

, where n̄
j

= 96 + 24j = n
1

= n
2

= n
3

for
j = 0, 1, . . . , 15. The average CPU time out of ten trials for each j is then plotted
in the figure. We can see Algorithms 2 and 3 are extraordinarily e�cient. They take
less than 10 seconds to finish a T ⇤p or Tq matrix-vector multiplication even for the
matrix T whose dimension is as large as 95 million. Figure 6.1(b) shows that the
complexity of T ⇤p and Tq is O(n log(n)).

Being equipped with these fast T ⇤p or Tq computational kernels, we evaluate how
the IPL method (Algorithm 1) performs, in terms of CPU time and iteration numbers,
to solve the eigenvalue problems for the band structure of the target photonic crystals.

MATLAB
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Band Structure of FCC Lattice
Dim. of SEP: 2,654,208 

70 test problems

29

at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally
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a3

Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.
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Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.
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Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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Eigen-decomposition of 
Discrete Double-Curl 
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Null space of          and
Define 

!

!

!

Then       and       form orthogonal bases of the 
null spaces of          and         , respectively.
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Range space of          and
Take orthogonal projection of                               
with respective to      and      : 

!

!

!

!

Then       and       are orthogonal, and
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Range space of          and
Apply the discrete curl and dual-curl operators on                                  
q  , respectively: 

!

!

!

!

Then       and       are orthogonal, and
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Important Decompositions
Define 

!

Eigen-decompositions of discrete double curl 
 

Singular value decomposition of single curl 
 
 
where
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Resulting Eigenvalue Problems
Discretized 3D photonic crystals (Dielectric materials):  
 
 
leads to the generalized eigenvalue problem  
 
 
 B is a positive diagonal matrix. 

The discretization of  
 
 
 
 leads to the generalized eigenvalue problem:  

40n zero eigenvalues other eigenvaluesk (<<n) wanted interior  
eigenvalues

0 ∞
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Numerical results

at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally
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Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.
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Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.
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Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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Advantages of SEVP

Dim. of GEVP and SVEP are 3n and 2n, respectively 

GEVP and SEVP have same 2n positive eigenvalues.  
SEVP has no zero eigenvalues.  
SEVP can be solved by inverse Lanczos.

43

n zero 
eigenvalues other eigenvalues

k (<<n) 
wanted

 interior  

0 ∞



Advantages of SEVP
As the SEVP 
 
 
in inverse Lanczos, we need to solve 

!

Well-conditioned system 

Can show that  

Conditioning number of B-1 is 13    

          and         can be computed efficiently by the FFT-
based schemes 

Can be efficiently solved by CG method 44

Eigendecomposition of Double-Curl Operator 13
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means the associated ⇤

q
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bQ is unitary. Furthermore,
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4. Inverse Projective Lanczos Method. The eigendecomposition of the dis-
crete double-curl operator derived in Theorem 3.7 is actually a powerful tool to solve
the GEVP (1.5). Via this eigendecomposition, we can form the eigendecomposition
of A in terms of its range space. This particular decomposition allows us to project
GEVP into a standard eigenvalue problem (SEVP) that is equipped with several
attractive computational properties as shown below.

The eigendecomposition (3.37) suggests that Q
r

forms an orthogonal basis for the
range space of A, where
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This basis, together with ⇤
r

= diag (⇤
q

,⇤
q
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In addition, B�1/2Q
r

⇤
1
2
r
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corresponding to the nonzero eigenvalues of the GEVP (1.5). Letting
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Pre-multiplying (4.3) by ⇤
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and using the facts that A = Q
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, we can form the SEVP

A
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y = �y, (4.4)
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Numerical results

at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally

r

aa

a

s

a1a2

a3

Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.

aa

c

a1a2

a3

Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.

r

b

a′√3
2 a′

√2
3 a′

a1

a2

a3

Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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Bandgap Diagram of FCC Lattice
Dim. of GEVP: 5,184,000 
 
Dim. of SEVP: 3,456,000  
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Fig. 6.1. CPU time for computing T ⇤

p and Tq with various n.
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Fig. 6.2. Band structure of the 3D photonic crystals with FCC lattice. The vectors k’s along

the boundary of first Brillouin zone. The frequency ! = a
p
�/(2⇡) is shown on the y-axis. The

radius of the sphere is r = 0.12a and the connecting spheroid has minor axis length s = 0.11a.

in MATLAB are used for the IPL and CG methods, respectively. The stopping

tolerances for eigs and pcg are set to be 104 ⇥ ✏/(2
q
��2

x

+ ��2

y

+ ��2

z

) and ✏

�

2
x

⇥ 10�3,

respectively, where ✏ ⇡ 2�52 is the floating-point relative accuracy in MATLAB. The
maximal number of Lanczos vectors for the restart in eigs is set to be 20. All
computations are carried out on a workstation with two Intel Quad-Core Xeon X5687
3.6 GHz CPUs, 48 GB main memory, the RedHat Linux operation system, and IEEE
double-precision floating-point arithmetic operations.

Figure 6.1(a) shows the timing results for computing T ⇤p and Tq by Algorithm 2
and 3, respectively. The matrix size of T ranges from 884, 736 to 94, 818, 816. In
particular, the dimension of T is n̄3

j

, where n̄
j

= 96 + 24j = n
1

= n
2

= n
3

for
j = 0, 1, . . . , 15. The average CPU time out of ten trials for each j is then plotted
in the figure. We can see Algorithms 2 and 3 are extraordinarily e�cient. They take
less than 10 seconds to finish a T ⇤p or Tq matrix-vector multiplication even for the
matrix T whose dimension is as large as 95 million. Figure 6.1(b) shows that the
complexity of T ⇤p and Tq is O(n log(n)).

Being equipped with these fast T ⇤p or Tq computational kernels, we evaluate how
the IPL method (Algorithm 1) performs, in terms of CPU time and iteration numbers,
to solve the eigenvalue problems for the band structure of the target photonic crystals.

at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
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p
;
ffiffiffiffiffiffiffiffi
2=3
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Þ with
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p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally
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Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.

aa

c

a1a2

a3

Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.
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Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0
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with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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radius of the sphere is r = 0.12a and the connecting spheroid has minor axis length s = 0.11a.

in MATLAB are used for the IPL and CG methods, respectively. The stopping

tolerances for eigs and pcg are set to be 104 ⇥ ✏/(2
q
��2

x

+ ��2

y

+ ��2

z

) and ✏

�

2
x

⇥ 10�3,

respectively, where ✏ ⇡ 2�52 is the floating-point relative accuracy in MATLAB. The
maximal number of Lanczos vectors for the restart in eigs is set to be 20. All
computations are carried out on a workstation with two Intel Quad-Core Xeon X5687
3.6 GHz CPUs, 48 GB main memory, the RedHat Linux operation system, and IEEE
double-precision floating-point arithmetic operations.

Figure 6.1(a) shows the timing results for computing T ⇤p and Tq by Algorithm 2
and 3, respectively. The matrix size of T ranges from 884, 736 to 94, 818, 816. In
particular, the dimension of T is n̄3

j

, where n̄
j

= 96 + 24j = n
1

= n
2

= n
3

for
j = 0, 1, . . . , 15. The average CPU time out of ten trials for each j is then plotted
in the figure. We can see Algorithms 2 and 3 are extraordinarily e�cient. They take
less than 10 seconds to finish a T ⇤p or Tq matrix-vector multiplication even for the
matrix T whose dimension is as large as 95 million. Figure 6.1(b) shows that the
complexity of T ⇤p and Tq is O(n log(n)).

Being equipped with these fast T ⇤p or Tq computational kernels, we evaluate how
the IPL method (Algorithm 1) performs, in terms of CPU time and iteration numbers,
to solve the eigenvalue problems for the band structure of the target photonic crystals.
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Remarks
Dispersive metallic materials  

!

!

Linearization  

!

Newton’s method 
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Eigen-decomposition of 
double-curl and SVD of 

single-curl

Null-space free method

Explicit Represent. of 
matrices

Photonic crystals

Numerical results

Complex materials

Numerical results

at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally
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Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.
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Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.
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Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
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p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.

730 J. Phys. Soc. Jpn., Vol. 73, No. 3, March, 2004 R. L. CHERN et al.



Complex Materials
The discretization of  
 
 
 
leads to the generalized eigenvalue problem: 

!

!

Singular value decomposition:
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Null space free eigenvalue problem
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Null space free generalized eigenvalue problem
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All eigenvalues are real



Advantages

      is Hermitian and positive definite 

We can use the generalized Lanczos method to 
solve NFGEP 

In each step, we need to solve the linear system 

!

Because       is Hermitian positive definite, the 
linear system can be solved by the conjugate 
gradient method efficiently.
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Two important complex media with positive     and  

Isotropic Chiral medium:  

Pseudochiral medium:  

!

                                   is a positive diagonal matrix 
provided 

All eigenvalues are real 

Chiral and pseudochiral media
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Eigen-decomposition of 
double-curl and SVD of 

single-curl

Null-space free method

Explicit Represent. of 
matrices

Photonic crystals

Numerical results

Complex materials

Numerical results

at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally
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Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.
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Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.
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configuration in Fig. 3 is a tetragon with length a0, width a0
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=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
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with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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Bandgap Diagram of SC Lattice
Dim. of coefficient matrix      : 8,388,608  

39 test problems with 

Chiral medium

58

at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally
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Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.
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the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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Conclusion
Explicit representation and eigen-decomposition of the discrete 
double-curl matrix A 

FFT-based preconditioner for metallic materials 

Singular value decomposition of discrete single-curl operator 

Null-space free methods 

The 3n×3n GEVP is reduced to 2n×2n SEVP for photonic crystals 

The 6n×6n GEVP is reduced to 4n×4n GEVP for complex media 

No zero eigenvalues in the reduced eigenvalue problems 

Well-conditioned linear systems 

Efficient FFT based algorithms 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Photonic Crystals
Periodic lattice composed of dielectric or metallic materials  
 
 
 
 
 
 
 
  

If we design a three-dimensional photonic crystal appropriately, 
there appears a frequency range where no electromagnetic 
eigenmode exists. Frequency ranges of this kind are called 
photonic band gaps. 

Light waves can be reflected, trapped, transported in photonic 
crystals.  

66

employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;
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. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally
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Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.
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Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.

r

b

a′√3
2 a′

√2
3 a′

a1

a2

a3

Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:
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The matrix A has 39 finite difference terms. Appendix B
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cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
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individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.
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matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
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formulation. For the three types of configuration, the
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cell as shown in Fig. 7.
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domain of computation:
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að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally

r

aa

a

s

a1a2

a3

Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.

aa

c

a1a2

a3

Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.

r

b

a′√3
2 a′

√2
3 a′

a1

a2

a3

Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.

730 J. Phys. Soc. Jpn., Vol. 73, No. 3, March, 2004 R. L. CHERN et al.



For SC, depends on radius of “ball” & “cylinder”

maxr,s(min(λi+1)-max(λi)). 

Many eigenvalue problems for the band structure

Bandgap Maximization
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Bandgap



Numerical Challenges
Yee’s scheme discretizes the equation 
 
 
 to get the generalized eigenvalue problem (GEVP)  
 

A: complex Hermitian positive semi-definite 

B: positive diagonal (containing magnetic constant, 
frequency, material dependent permittivity) 

Dimension: 3n (n=n1n2n3, i.e. order 3) 

Need a few of smallest (interior) positive eigenvalues68

Eigendecomposition of Double-Curl Operator 3

Many numerical methods have been proposed to discretize the Maxwell equations.
Examples include finite difference methods [7, 8, 25, 35], finite volume methods [9,
10, 23], and finite element methods [2, 5, 6, 15, 20, 26], the Whitney form [1, 34],
co-volume discretization [29], mimetic discretization [19], and edge element methods
[12, 27, 28, 31]. In this paper, we focus on solving the challenging problem in using
finite difference Yee’s scheme to discrete the Maxwell equations. Discretizing Eq. (1.2)
on a primitive cell with FCC lattice vectors (1.4) by Yee’s scheme [35] leads to a
generalized eigenvalue problem (GEVP)

Ax = λBx. (1.5)

Here, A ∈ C3n×3n is Hermitian positive semi-definite and B is positive and diagonal.
The matrix A is the discrete double-curl operator ∇×∇× and the diagonal elements
in B are the material dependent dielectric constants. There are two numerically
challenging problems in solving (1.5): (i) The multiplicity of the zero eigenvalue of
(1.5) is the same as the number n of cells which is one third of the dimension of A
[4, 8, 18]. This causes several difficulties in numerical computation since we are mainly
interested in a few of the smallest positive eigenvalues which are deeply located in the
interior of the spectrum. (ii) In the SC lattice, the fast Fourier Transform (FFT)
has been successfully applied to compute the associated photonic band-gap [11, 16].
However, in FCC lattice, because any pairwise angle formed by a1, a2, and a3 is π/3,
the periodic properties of the FCC lattice is much more complicated than that of SC
lattice. To develop a new FFT for FCC lattice becomes interesting and challenging.

To tackle these challenging problems, we make the following contributions to
derive an eigendecomposition of A and then to develop a fast eigensolver for the
GEVP.

• We firstly analyze the discretized matrices of the partial derivative and double-curl
operators and explicitly derive the eigendecompositions of these matrices so
that the range of A can be spanned by an orthogonal basis Qr. Furthermore,

B−1QrΛ
1/2
r with some positive diagonal Λr spans the invariant subspace

corresponding to all nonzero eigenvalues of (1.5).

• By applying this basis B−1QrΛ
1/2
r , the GEVP can be reduced as a standard

eigenvalue problem (SEVP) Ary = λy so that the GEVP and SEVP have

the same positive eigenvalues, where Ar = Λ1/2
r Q∗

rB
−1QrΛ

1/2
r is an 2n× 2n

Hermitian and positive definite matrix. The SEVP can then be solved by the
inverse Lanczos method without being affected by zero eigenvalues. Moreover,
the coefficient matrix Ar is well-conditioned, so, in each Lanczos step, the
conjugate gradient method can then be used to solve the associated linear
system efficiently without any preconditioner.

• For solving the linear system in the inverse Lanczos method, two types of
matrix-vector multiplications Q∗

rp and Qrq are the most costly part of the
computation. Here, we derive a new FFT for the computations of Q∗

rp and
Qrq which significantly reduce the computational cost.

Due to using the Yee’s scheme, the discretized double-curl operator with FCC
lattice is explicitly represented by the matrix A in (1.5). From the intrinsic mathematical
properties of A, the huge null space of (1.5) can be deflated. Then, we build a
new standard eigenvalue problem without zero eigenvalues. The inverse Lanczos
method with fast Fourier Transform can then be used to compute the positive target
eigenvalues and realized by MATLAB. Numerical results justify the efficiency of the

EIGENDECOMPOSITION OF THE DISCRETE DOUBLE-CURL
OPERATOR WITH APPLICATION TO FAST EIGENSOLVER FOR

THREE DIMENSIONAL PHOTONIC CRYSTALS ⇤

TSUNG-MING HUANG† , HAN-EN HSIEH‡ , WEN-WEI LIN§ , AND WEICHUNG WANG¶

Abstract. This article focuses on the discrete double-curl operator arising in the Maxwell
equation that models three dimensional photonic crystals with face centered cubic lattice. The dis-
crete double-curl operator is the degenerate coe�cient matrix of the generalized eigenvalue problems
(GEVP) due to the Maxwell equation. We derive an eigendecomposition of the degenerate coe�cient
matrix and explore an explicit form of orthogonal basis for the range and null spaces of this matrix.
To solve the GEVP, we apply these theoretical results to project the GEVP to a standard eigenvalue
problem (SEVP), which involves only the eigenspace associated with the nonzero eigenvalues of the
GEVP and therefore the zero eigenvalues are excluded and will not degrade the computational ef-
ficiency. This projected SEVP can be solved e�ciently by the inverse Lanczos method. The linear
systems within the inverse Lanczos method are well-conditioned and can be solved e�ciently by the
conjugate gradient method without using a preconditioner. We also demonstrate how two forms of
matrix-vector multiplications, which are the most costly part of the inverse Lanczos method, can
be computed by fast Fourier transformation due to the eigendecomposion to significantly reduce the
computation cost. Integrating all of these findings and techniques, we obtain a fast eigenvalue solver.
The solver has been implemented by MATLAB and successfully solves each of a set of 5.184 million
dimension eigenvalue problems within 50 to 104 minutes on a workstation with two Intel Quad-Core
Xeon X5687 3.6 GHz CPUs.

Key words. The Maxwell equation, discrete double-curl operator, eigendecomposition, fast
Fourier transform, photonic crystals, face centered cubic lattice.

AMS subject classifications. 65F15, 65T50, 15A18, 15A23.

1. Introduction. r⇥r⇥ Ẽ(x) = µ
0

!2"(x)Ẽ(x)
To study the band structures of three-dimensional photonic crystals, we consider

the Maxwell’s equations

8
>><

>>:

r⇥H = "@
t

E,
r⇥ E = �µ

0

@
t

H,
r · ("E) = 0,
r ·H = 0,

(1.1)

where H, E, µ
0

, and " represent the magnetic field, the electric field, the magnetic
constant, and the material dependent permittivity, respectively. Suppose H and E
are harmonic in time. By separating the time and space variables, and eliminating
the magnetic field H, Eqs (1.1) become the di↵erential eigenvalue problem

⇢ r⇥r⇥ E = �"E
r · ("E) = 0,

(1.2)
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Challenge: Multiple Zero Eigenvalues 
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Backup Slides
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Perodic Lattice



Preconditioning in SC
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Simple Cubic Photonic Crystal
Spheres (radius r) connected with cylinders (radius s)  

73
Biswas et al. (PRB, 2002)
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